A Limited History of Complex Dynamics

Eleanor Waiss Butler University

12 April 2024

About me...

... and a shameless plug for MRC

- Junior, Mathematics, Actuarial Science, & Computer Science
- 2022, 2023 MRC Researcher
 - 2022: Dr. Krohn, Finite Projective Geometry
 - 2023: Dr. Kaschner, Fractal Geometry

MRC 2023

・ コット (雪) (小田) (コット 日)

Outline

Function Iteration Motivating Examples Fractals

Toolbox of Tricks

Dynamics 101 Conjugacy The Mandelbrot Set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Current Work

Outline

Function Iteration Motivating Examples Fractals

Toolbox of Tricks

Dynamics 101 Conjugacy The Mandelbrot Set

Current Work

・ロト・西ト・ヨト・ヨー ひゃぐ

Basics of Function Iteration

- Consider some function, $f: U \rightarrow U$.
- What happens when you apply (compose) that function to the same input multiple times?

Definition

The **orbit** of a point *x* is the sequence of iterates of *x* under *f*:

$$x_n = f(f(f \cdots f(x))) = (f \circ f \circ \cdots \circ f)(x) = f^n(x)$$

Motivating Example I

Question

How many "different" orbits are there?

Consider $f(x) = x^2$:

- ▶ $3 \mapsto 9 \mapsto 81 \mapsto 6561 \mapsto 43046721 \mapsto \cdots \infty$ (diverges)
- ▶ $0.5 \mapsto 0.25 \mapsto 0.0625 \mapsto 0.00390625 \mapsto \cdots 0$ (converges)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▶ $0 \mapsto 0 \mapsto 0 \mapsto \cdots 0$ (fixed point)

Motivating Example II

Consider $f(x) = x^2 - 1$:

 $\blacktriangleright \ 3 \mapsto 8 \mapsto 63 \mapsto 3698 \mapsto 14673663 \cdots \infty$

▶
$$0 \mapsto -1 \mapsto 0 \mapsto -1 \mapsto 0 \cdots$$
 (cycle)

▶ $0.5 \mapsto -0.75 \mapsto -0.437 \mapsto -0.809 \mapsto -0.346 \mapsto -0.88 \mapsto \cdots \mapsto -1 \mapsto 0 \mapsto 1 \mapsto 0 \mapsto \cdots$ (converges to cycle)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A Preview of Complex Analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Object of Study

Definition

The **filled Julia set** is the set of points whose orbits remain bounded under iteration by f, denoted K(f).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $K(z^2)$

 $K(z^2)$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

 $K(z^2 - 1)$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 $K(z^2 - 1)$

 $K(z^2 - 1)$

Filled Julia Sets

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Outline

Function Iteration Motivating Examples Fractals

Toolbox of Tricks

Dynamics 101 Conjugacy The Mandelbrot Set

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Current Work

Dynamics

- Study of mathematical or physical systems that evolve over time
- Applications to physics, biology, finance, computer engineering, etc.
- Dynamical Systems

 Complex Dynamics
 Discrete Dynamics

Lorenz Attractor. Source: Wikimedia Commons.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Some History

(Left) Pierre Fatou, 1878-1929. (Right) Gaston Julia, 1893-1978. Accessed from www.quantamagazine.org.

The Dichotomy

What are we trying to answer?

Given two sufficiently close points z_0 , w_0 , do they exhibit roughly the same behavior?

Yes!	No!
${\cal F}$	J
Fatou set	Julia set
Points behave roughly the same	Points do not behave roughly the same

But what do the orbits actually do?

(ロ) (同) (三) (三) (三) (○) (○)

First Handy Tool

This is a hammer

Definition

A point *z* is called a **fixed point** of *f* if f(z) = z.

If an orbit z_n converges to some point w, then

$$w = \lim_{n \to \infty} z_n = \lim_{n \to \infty} z_{n+1}$$

=
$$\lim_{n \to \infty} f(z_n) = f\left(\lim_{n \to \infty} z_n\right) = f(w).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus, w must be a fixed point.

Am Important Theorem

This is a saw

Theorem (Fundamental Theorem of Algebra)

A degree n polynomial of complex coefficients has exactly n roots, counting multiplicity.

A byproduct of this:

a degree n complex polynomial can be factored into n linear terms

Some Calculus

This is a straight edge

Definition

The derivative of f at w <21->

$$f'(w) = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}$$

is the instantaneous rate of change of f.

Suppose *w* is a fixed point of f(z). Then

$$|f(z) - w| \qquad = |f(z) - f(w)| \qquad \approx |f'(z)| \cdot |z - w|$$

distance between f(z) and w

scalar multiple of distance between *z* and *w*

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Local Fixed Point Theory

This is a nail

Definition (Multiplier of a Fixed Point)

Suppose *w* is a fixed point of *f*, and let $\lambda = f'(w)$.

- If $|\lambda| < 1$, then *w* is an **attracting** fixed point;
- If $|\lambda| > 1$, then *w* is a **repelling** fixed point; and

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• If $|\lambda| = 1$, then *w* is an **indifferent** fixed point.

$f^{3}(\mathcal{B}(w,r)) \subseteq f^{2}(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$f^{3}(\mathcal{B}(w,r)) \subseteq f^{2}(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

$f^{3}(\mathcal{B}(w,r)) \subseteq f^{2}(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

$f^{3}(\mathcal{B}(w,r)) \subseteq f^{2}(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

$f(z)=z^2$

Example:
$$f(z) = z^2$$
.
• 0.9 \mapsto 0.81 \mapsto 0.6561 \mapsto 0.4305 $\mapsto \cdots 0$.
• $z \mapsto z^2 \mapsto z^4 \mapsto z^8 \mapsto \cdots \mapsto z^{(2^n)} \mapsto \cdots 0$ for $|z| < 1$.

Definition

The **basin of attraction** for an attracting fixed point w

$$\mathcal{A}_{w} = \{z \colon \lim_{n \to \infty} f^{n}(z) = w\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is the set of all points whose orbits converge to w.

Working Backwards

Definition

The **preimage** of a point *z* under *f* is the set of points $\{w_d\}$ such that $f(w_d) = z$. If *f* is a degree *d* polynomial, then there exists *d* preimages of *z*, counting multiplicity.

Invariance of J and \mathcal{F}

This is a pencil

Proposition

The following are equivalent:

- z is an element of F;
- f(z) is an element of \mathcal{F} ;
- $f^{-1}(z)$ is an element of \mathcal{F} .

Fatou and Julia sets are totally invariant.

A Better Tool

This is a sledgehammer..

Definition

A point z_0 is called a **degree** k **periodic point** of f if $f^k(z_0) = z_0$ and $z_0, z_1, z_2, \dots, z_{k-1}$ are all distinct.

If z_0 is a degree *k* periodic point of *f*, then z_0 is a *fixed point* of f^k .

Iteration Lemma

... that is really just a hammer

Lemma

For any k, the sets $\mathcal{F}(f^k)$, $J(f^k)$, and $K(f^k)$ are exactly the sets $\mathcal{F}(f)$, J(f), and K(f).

K(f)

 $K(f^{2024})$

Local Fixed Point Theory

This is a bigger nail

Definition

Suppose $\{z_0, z_1, \dots, z_{k-1}\}$ is a degree *k* periodic cycle of *f*, and let

$$\lambda = (f^k)'(z_i) = f'(z_0) \cdot f'(z_1) \cdot \ldots \cdot f'(z_{k-1})$$

If |λ| < 1, then {z₀, z₁, ..., z_{k-1}} is an attracting cycle;
If |λ| > 1, then {z₀, z₁, ..., z_{k-1}} is a repelling cycle; and
If |λ| = 1, then {z₀, z₁, ..., z_{k-1}} is an indifferent cycle.

Conjugate Maps

This is a box

Can we make our lives easier?

Definition

Polynomials f and g are **conjugate** if there exists an invertible function φ such that

$$\varphi\circ f=g\circ\varphi,$$

or, equivalently,

$$f = \varphi^{-1} \circ g \circ \varphi$$

Properties of Conjugate Maps

• Let
$$f = \varphi^{-1} \circ g \circ \varphi$$
. Then
 $f^n = f \circ \cdots \circ f = (\varphi^{-1} \circ g \circ \varphi) \circ \cdots \circ (\varphi^{-1} \circ g \circ \varphi) = \varphi^{-1} \circ g^n \circ \varphi$

• Let z be fixed by f and $\varphi(z) = w$. Then

$$w = \varphi(z) = (\varphi \circ f)(z) = (\varphi \circ \varphi^{-1} \circ g \circ \varphi)(z) = (g \circ \varphi)(z) = g(w)$$

• Let $f'(z) = \lambda$. Then

 $\lambda = f'(w) = (\varphi^{-1} \circ g \circ \varphi)'(z) = (\varphi^{-1})(w) \cdot g'(w) \cdot \varphi'(z) = g'(w)$

But why do we care?

All Quadratics are Conjugate to $z^2 + c$ Let $g(z) = az^2 + bz + k$, and let $\varphi(z) = \frac{1}{a}z - \frac{b}{2a}$. Hence $\varphi^{-1}(z) = az + \frac{b}{2}$ and

$$f(z) = (\varphi^{-1} \circ g \circ \varphi)(z) = \varphi^{-1}(g(\varphi(z)))$$
$$= a\left(a\left(\frac{1}{a}z - \frac{b}{2a}\right)^2 + b\left(\frac{1}{a}z - \frac{b}{2a}\right) + k\right) + \frac{b}{2}$$
$$= z^2 - bz + \frac{b^2}{4} + bz - \frac{b^2}{2} + ak + \frac{b}{2}$$
$$= z^2 + \frac{b^2}{4} - \frac{b^2}{2} + ak + \frac{b}{2}$$
$$= z^2 + c$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Consider the conjugacy classes of maps $f_c(z) = z^2 + c$:

- ▶ For what *c* does *f*_c have an attracting point?
- ▶ For what *c* does *f_c* have an attracting two-cycle?

•

(日) (日) (日) (日) (日) (日) (日)

For what c does f_c have an attracting k-cycle?

Attracting Fixed Points

Find *c* such that $f_c(z) = z^2 + c$ has a fixed point:

$$f_c(z) = z^2 + c = z$$

$$z^2 - z + c = 0$$

$$(z - a)(z - b) = 0$$

$$z^2 - (a + b)z + ab = 0$$

$$a + b = 1 \qquad ab = c$$

We want at least one attracting fixed point; so

$$|\lambda_{a}| = |f_{c}'(a)| = |2a| < 1
ightarrow |a| < rac{1}{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Attracting Fixed Points

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Attracting Period-2 Points

Find *c* such that $f_c(z) = z^2 + c$ has a period-2 cycle:

$$f_c^2(z) = f_c(f_c(z)) = (z^2 + c)^2 + c = z$$

$$z^4 + 2cz^2 - z + c^2 + c = 0$$

$$(z - a)(z - b)(z^2 + z + 1 + c) = 0$$

$$(z - u)(z - v) = z^2 - (u + v)z + uv$$

$$u + v = -1 \qquad uv = 1 + c$$

Attracting Period-2 Points

$$\lambda = (f_c^2)'(u) = f'_c(f_c(u))f'_c(u)$$

= $f'_c(v)f'_c(u) = (2u)(2v) = 4uv$
 $|\lambda| < 1 \Rightarrow |1 + c| < 1/4$

くりょう 小田 マイビット 日 うくの

From Kleinian groups...

2-GENERATOR SUBGROUPS OF PSL(2, C) 71

Fig. 2. The set of C's such that $f(z) = z^2 + C$ has a stable periodic orbit.

R. Brooks and P. Matelski, 1981. The dynamics of 2-generator subgroups of *PSL*(2, *C*).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

...to internet fame

The Mandelbrot Set. Accessed from Wikimedia Commons.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The Old and The New

Douady-Hubbard ('82): *M* is connected [4].

Mandelbrot Locally Connected (MLC) conjectured

Sullivan ('85): Classification Theorem [7].

 There exist only hyperbolic cycles, parabolic cycles, Siegel disks, or Herman rings.

(ロ) (同) (三) (三) (三) (○) (○)

• Hubbard ('93): If MLC, then $\mathcal{H} = \operatorname{int} M$ and $M = \overline{\mathcal{H}}$ [5].

Douady ('94): K(f) is not continuous with respect to f [3].

Outline

Function Iteration Motivating Examples Fractals

Toolbox of Tricks

Dynamics 101 Conjugacy The Mandelbrot Set

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Current Work

A brief thread through history

2012 [1] Boyd & Schulz:
$$f_n(z) = z^n + c.$$

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

*f*_{2,-0.12+0.75*i*}

 $f_{2,-0.15+i}$

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

*f*_{4,-0.12+0.75*i*}

 $f_{4,-0.15+i}$

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

*f*_{8,-0.15+*i*}

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

*f*_{16,-0.15+*i*}

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

*f*_{32,-0.15+*i*}

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

*f*_{64,-0.15+*i*}

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z)=z^n+c,$$

• where $n \ge 2$ is an integer, and

$$f_{128,-0.12+0.75i}$$

Boyd-Schulz

$$f_{n,c}(z)=z^n+c$$

Theorem (Boyd-Schulz, 2012 [1])

Let $c \in \mathbb{C}$. Using the Hausdorff metric, (1) If $c \in \mathbb{C} \setminus \overline{\mathbb{D}}$, then $\lim_{n \to \infty} K(f_{n,c}) = S_0 = \{|z| = 1\}$. (2) If $c \in \mathbb{D}$, then $\lim_{n \to \infty} K(f_{n,c}) = \overline{\mathbb{D}} = \{|z| \le 1\}$. (3) If $c \in S^1$, then if $\lim_{n \to \infty} K(f_{n,c})$ exists, it is contained in $\overline{\mathbb{D}}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Boyd-Schulz

$$f_{n,c}(z)=z^n+c$$

Theorem (Boyd-Schulz, 2012 [1])

Let
$$c \in \mathbb{C}$$
. Using the Hausdorff metric,
(1) If $c \in \mathbb{C} \setminus \overline{\mathbb{D}}$, then $\lim_{n \to \infty} K(f_{n,c}) = S_0 = \{|z| = 1\}$.
(2) If $c \in \mathbb{D}$, then $\lim_{n \to \infty} K(f_{n,c}) = \overline{\mathbb{D}} = \{|z| \le 1\}$.
(3) If $c \in S^1$, then if $\lim_{n \to \infty} K(f_{n,c})$ exists, it is contained in $\overline{\mathbb{D}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(3) was further improved in [6] (2015).

A brief thread through history

2012[1] Boyd & Schulz:
$$f_n(z) = z^n + c.$$
2015[6] Kaschner, Romero, &
Simmons: $f_n(z) = z^2 + c.$ **2020**[2] Brame & Kaschner: $f_n(z) = z^n + q(z).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

More geometric limits of Julia sets

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

 $f_n(z)=z^n+q(z),$

• where $n \ge 2$ is an integer, and

q is a fixed degree d polynomial.

 $f_{200,z^2+0.25+0.25i}$

 $f_{200,z^2+0.45+0.25i}$

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 4

K(q)

 $K(f_{4,q})$

ヘロト 人間 とくほとう ほとう

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 8

K(q)

 $K(f_{8,q})$

・ロト ・聞ト ・ヨト ・ヨト

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 16

K(q)

 $K(f_{16,q})$

・ロト ・聞ト ・ヨト ・ヨト

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 32

K(q)

 $K(f_{32,q})$

・ロト ・聞ト ・ヨト ・ヨト

$$q(z) = z^2 - 0.1 + 0.75i,$$

$$n = 64$$

K(q)

 $K(f_{64,q})$

ヘロン ヘロン ヘヨン ヘヨン

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 80

K(q)

 $K(f_{80,q})$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 180

K(q)

 $K(f_{180,q})$

・ロト ・聞ト ・ヨト ・ヨト

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 360

K(q)

 $K(f_{360,q})$

・ロト ・聞ト ・ヨト ・ヨト

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 720

K(q)

 $K(f_{720,q})$

ヘロト 人間 とくほとくほとう

$$q(z) = z^2 - 0.1 + 0.75i,$$

n = 1800

K(q)

 $K(f_{1800,q})$

・ロト ・聞ト ・ヨト ・ヨト

The limit set

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The limit set

$$\mathcal{K}_q = \bigcap_{i=0}^{\infty} q^{-i}(\bar{\mathbb{D}}) = \{z \colon q^i(z) \in \bar{\mathbb{D}} \, \forall i \ge 0\}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

The limit set $_{\infty}$

$$K_q = \bigcap_{i=0}^{\infty} q^{-i}(\overline{\mathbb{D}}) = \{z \colon q^i(z) \in \overline{\mathbb{D}} \forall i \ge 0\}$$
$$S_0 = \{z \colon |z| = 1\}$$

The limit set $_{\infty}$

$$K_q = \bigcap_{i=0}^{\infty} q^{-i}(\bar{\mathbb{D}}) = \{ z \colon q^i(z) \in \bar{\mathbb{D}} \, \forall i \ge 0 \}$$

$$S_0 = \{z : |z| = 1\}$$

 $S_j = \{q^j(z) \in \partial \mathbb{D} \text{ and } q^i(z) \in \mathbb{D} \text{ for } i = 1, \dots, j-1\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The limit set $_{\infty}$

$$K_q = \bigcap_{i=0}^{\infty} q^{-i}(\overline{\mathbb{D}}) = \{z \colon q^i(z) \in \overline{\mathbb{D}} \ \forall i \ge 0\}$$

$$S_0 = \{z : |z| = 1\}$$

 $S_j = \{q^j(z) \in \partial \mathbb{D} \text{ and } q^i(z) \in \mathbb{D} \text{ for } i = 1, \dots, j-1\}$

$$\lim_{n\to\infty} K(f_{n,q}) = K_q \cup \bigcup_{j\geq 0} S_j$$

Brame & Kaschner

$$f_n(z)=z^n+q(z)$$

Theorem (Brame-Kaschner, 2020 [2])

If deg $q \ge 2$, q is hyperbolic, and q has no attracting fixed points in S_0 , then

$$\lim_{n\to\infty} K(f_{n,q}) = K_q \cup \bigcup_{j\geq 0} S_j.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A brief thread through history

2012[1] Boyd & Schulz:
$$f_n(z) = z^n + c.$$
2015[6] Kaschner, Romero, &
Simmons: $f_n(z) = z^2 + c.$ 2020[2] Brame & Kaschner:
 $f_n(z) = z^n + q(z).$ 2023Kaschner, Kapiamba, & W.:
 $f_n(z) = (p(z))^n + q(z).$

Even more geometric limits of Julia sets

Let $f_n \colon \mathbb{C} \to \mathbb{C}$ by

$$f_n(z) = (p(z))^n + q(z),$$

- where $n \ge 2$ is an integer, and
- *p*, *q* are fixed polynomials.

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 4$$

K(q)

 $K(f_4)$

$$p(z) = z^2 + 0.05 + 0.75i,$$

 $q(z) = z^2 - 0.1 + 0.75i,$
 $n = 8$

K(q)

 $K(f_8)$

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 16$$

K(q)

 $K(f_{16})$

・ロト ・聞ト ・ヨト ・ヨト

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 32$$

K(q)

 $K(f_{32})$

・ロト ・聞ト ・ヨト ・ヨト

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 64$$

K(q)

 $K(f_{64})$

ヘロン ヘロン ヘロン ヘロン

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 80$$

K(q)

 $K(f_{80})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 180$$

K(q)

 $K(f_{180})$

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 360$$

K(q)

 $K(f_{360})$

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 720$$

K(q)

 $K(f_{720})$

$$p(z) = z^{2} + 0.05 + 0.75i,$$

$$q(z) = z^{2} - 0.1 + 0.75i,$$

$$n = 1800$$

K(q)

 $K(f_{1800})$

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣

The trouble with Quibbles

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ▲○

The trouble with Quibbles $\mathcal{K}_{q} = \bigcap_{j=0}^{\infty} q^{-j} \left(p^{-1}(\bar{\mathbb{D}}) \right)$

(日)

The trouble with Quibbles $\mathcal{K}_{q} = \bigcap_{j=0}^{\infty} q^{-j} \left(p^{-1}(\bar{\mathbb{D}}) \right)$ $\mathcal{Q}_{0} = \left\{ p^{-1}(z) : |z| = 1 \right\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The trouble with Quibbles $\begin{aligned} & \mathcal{K}_{q} = \bigcap_{j=0}^{\infty} q^{-j} \left(p^{-1}(\bar{\mathbb{D}}) \right) \\ & \mathcal{Q}_{0} = \left\{ p^{-1}(z) \colon |z| = 1 \right\} \\ & \mathcal{Q}_{j} = \left\{ q^{j}(z) \in \partial p^{-1}(\mathbb{D}) \text{ and } q^{k}(z) \in p^{-1}(\mathbb{D}) \text{ for } k = 1, \dots, j-1 \right\} \end{aligned}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The trouble with Quibbles $\begin{aligned} & \mathcal{K}_{q} = \bigcap_{j=0}^{\infty} q^{-j} \left(p^{-1}(\bar{\mathbb{D}}) \right) \\ & \mathcal{Q}_{0} = \left\{ p^{-1}(z) \colon |z| = 1 \right\} \\ & \mathcal{Q}_{j} = \left\{ q^{j}(z) \in \partial p^{-1}(\mathbb{D}) \text{ and } q^{k}(z) \in p^{-1}(\mathbb{D}) \text{ for } k = 1, \dots, j-1 \right\} \end{aligned}$

 $\lim_{n\to\infty} K(f_n) = K_q \cup \bigcup \mathcal{Q}_j$ j>0

Generalization

$$f_n(z) = (p(z))^n + q(z)$$

Theorem (Kaschner, Kapiamba, & W.; 2023)

If p, q are polynomials with deg p, $q \ge 2$, and q is hyperbolic with no attracting periodic points on $\partial p^{-1}(\overline{\mathbb{D}})$, then

$$\lim_{n\to\infty} K(f_{n,p,q}) = K_q \cup \bigcup_{j\geq 0} \mathcal{Q}_j$$

・ロト・日本・日本・日本・日本

A brief thread through history... and the future

2012 · · · · •	[1] Boyd & Schulz: $f_n(z) = z^n + c.$
2015 · · · · •	[6] Kaschner & Romero & Simmons: $f_n(z) = z^2 + c$.
2020 · · · · •	[2] Brame & Kaschner: $f_n(z) = z^n + q(z).$
2023 · · · · •	Kaschner, Kapiamba, & W.: $f_n(z) = (p(z))^n + q(z).$
2024 · · · · •	Kaschner, Kapiamba, & W.: $g_n(z) = p^n(z) + q(z).$

Current work

$$(p(z))^n \neq p^n(z)$$

powers iterates

Behold, for

$$f_n = (p(z))^n + q(z)$$

 $g_n = p^n(z) + q(z)$

(ロ)、(型)、(E)、(E)、 E、のQの

Immediate issues with subsequential limits $g_n(z) = p^n(z) + q(z)$

 $p(z) = z^2 - 0.123 + 0.745i$ $q(z) = z^2 - 0.2 - 0.3i$

 $K(g_n)$ for n = 49, 50, 51.

Immediate issues with subsequential limits $g_n(z) = p^n(z) + q(z)$

 $p(z) = z^2 - 0.123 + 0.745i$ $q(z) = z^2 - 0.2 - 0.3i$

$K(g_n)$ for n = 49, 50, 51.

$K(g_n)$ for n = 54, 57, 60.

< ∃ ► = •) < (~

Escaping the Rabbitverse

- Suppose *p* is hyperbolic with periodic attracting cycle z_1, \dots, z_k .
- For each *n* there exists $\ell \in \{1, \dots, k\}$ such that

$$g_n(z) = p^{km+\ell} + q(z) \approx z_\ell + q(z)$$

• Define $\hat{g}(z)$: $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ via

$$\hat{g}(z) = egin{cases} q(z) + \lim_{m o \infty} p^{n_m} & z \in \operatorname{int} \mathcal{K}(p) \ p(z) & z \in \mathcal{J}(p) \ \infty & z \in \hat{\mathbb{C}} ackslash \mathcal{K}(p) \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Major Results

Theorem

For any polynomials p, q,

$$\partial K(\hat{g}) \subseteq \liminf_{m \to \infty} K(g_{n_m}) \subseteq \limsup_{m \to \infty} K(g_{n_m}) \subseteq K(\hat{g})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

$$\lim_{n \to \infty} K(g_{n_m}) = K(\hat{g})$$
 if

- p hyperbolic, and
- int $K(\hat{g})$ is comprised of attracting basins for \hat{g} .

References

Suzanne Hruska Boyd and Michael J. Schulz.

Geometric limits of Mandelbrot and Julia sets under degree growth. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22(12):1250301, 21, 2012.

Micah Brame and Scott Kaschner.

Geometric limits of Julia sets for sums of power maps and polynomials. *Complex Analysis and its Synergies*, 6(3):1–8, 2020.

Adrien Douady.

Does a Julia set depend continuously on the polynomial. Complex dynamical systems: The mathematics behind the Mandelbrot set and Julia sets, 49:91–138, 1994.

Adrien Douady and John H. Hubbard.

On the dynamics of polynomial-like mappings.

Annales scientifiques de l'École Normale Supérieure, 18(2):287-343, 1985.

John H. Hubbard.

Local connectivity of Julia sets and bifurcation loci: three theorems of J. 1993.

Geometric limits of Julia sets of maps $z^n + \exp(2\pi i\theta)$ as $n \to \infty$. International Journal of Bifurcation and Chaos, 25(08):1530021, 2015.

Dennis Sullivan.

Quasiconformal homeomorphisms and dynamics I. solution of the Fatou-Julia problem on wandering domains.

Annals of mathematics, 122(2):401-418, 1985.

THANK YOU!

Eleanor Waiss

ewaiss@butler.edu

A Limited History of Complex Dynamics

Butler University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ