A Limited History of Complex Dynamics

Eleanor Waiss Butler University

12 April 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

About me...

...and a shameless plug for MRC

- ▶ Junior, Mathematics, Actuarial Science, & Computer Science
- ▶ 2022, 2023 MRC Researcher
	- ▶ 2022: Dr. Krohn, Finite Projective **Geometry**
	- ▶ 2023: Dr. Kaschner, Fractal Geometry MRC 2023

イロト イ押 トイヨ トイヨ トーヨー

 2990

Outline

[Function Iteration](#page-3-0) [Motivating Examples](#page-4-0) [Fractals](#page-8-0)

[Toolbox of Tricks](#page-15-0)

[Dynamics 101](#page-18-0) **[Conjugacy](#page-30-0)** [The Mandelbrot Set](#page-33-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

[Current Work](#page-41-0)

Outline

[Function Iteration](#page-3-0) [Motivating Examples](#page-4-0) [Fractals](#page-8-0)

[Toolbox of Tricks](#page-15-0)

[Dynamics 101](#page-18-0) [Conjugacy](#page-30-0) [The Mandelbrot Set](#page-33-0)

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

[Current Work](#page-41-0)

Basics of Function Iteration

- ▶ Consider some function, $f: U \rightarrow U$.
- ▶ What happens when you apply (compose) that function to the same input multiple times?

Definition

The **orbit** of a point *x* is the sequence of iterates of *x* under *f*:

$$
x_n = f(f(f \cdots f(x))) = (f \circ f \circ \cdots \circ f)(x) = f^n(x)
$$

Motivating Example I

Question

How many "different" orbits are there?

Consider $f(x) = x^2$:

- \triangleright 3 \mapsto 9 \mapsto 81 \mapsto 6561 \mapsto 43046721 $\mapsto \cdots$ ∞ (diverges)
- \triangleright 0.5 \mapsto 0.25 \mapsto 0.0625 \mapsto 0.00390625 $\mapsto \cdots$ 0 (converges)

KORKARA KERKER DAGA

 \triangleright 0 \mapsto 0 \mapsto 0 \mapsto \cdots 0 (fixed point)

Motivating Example II

Consider $f(x) = x^2 - 1$:

 \blacktriangleright 3 \mapsto 8 \mapsto 63 \mapsto 3698 \mapsto 14673663 \cdots ∞

$$
\blacktriangleright \ 0 \mapsto -1 \mapsto 0 \mapsto -1 \mapsto 0 \cdots \text{ (cycle)}
$$

▶ 0.5 → −0.75 → −0.437 → −0.809 → −0.346 → −0.88 → $\cdots \mapsto -1 \mapsto 0 \mapsto 1 \mapsto 0 \mapsto \cdots$ (converges to cycle)

KORKARA KERKER DAGA

A Preview of Complex Analysis

Object of Study

Definition

The **filled Julia set** is the set of points whose orbits remain bounded under iteration by *f*, denoted *K*(*f*).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어)

 $K(z^2)$

Kロトメ部トメミトメミト (ミ) のQC

 $K(z^2)$

Kロトメ部トメミトメミト (ミ) のQC

 $K(z^2 - 1)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

 $K(z^2 - 1)$

 $K(z^2 - 1)$

Filled Julia Sets

メロトメ部 トメミトメミト 299 Þ

Outline

[Function Iteration](#page-3-0) [Motivating Examples](#page-4-0) [Fractals](#page-8-0)

[Toolbox of Tricks](#page-15-0)

[Dynamics 101](#page-18-0) **[Conjugacy](#page-30-0)** [The Mandelbrot Set](#page-33-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

[Current Work](#page-41-0)

Dynamics

- ▶ Study of mathematical or physical systems that evolve over time
- \blacktriangleright Applications to physics, biology, finance, computer engineering, etc.
- ▶ Dynamical Systems \rightarrow Complex Dynamics
	- \rightarrow Discrete Dynamics

Lorenz Attractor. Source: Wikimedia Commons.

K ロ ト K 何 ト K ヨ ト K ヨ ト

 $2Q$

Some History

(Left) Pierre Fatou, 1878-1929. (Right) Gaston Julia, 1893-1978. Accessed from www.quantamagazine.org.

KOKK@KKEKKEK E 1990

The Dichotomy

What are we trying to answer?

Given two sufficiently close points z_0 , w_0 , do they exhibit roughly the same behavior?

But what do the orbits *actually do?*

KOD KOD KED KED E VAN

First Handy Tool

This is a hammer

Definition

A point *z* is called a **fixed point** of *f* if $f(z) = z$.

If an orbit z_n converges to some point w , then

$$
w = \lim_{n \to \infty} z_n = \lim_{n \to \infty} z_{n+1}
$$

=
$$
\lim_{n \to \infty} f(z_n) = f\left(\lim_{n \to \infty} z_n\right) = f(w).
$$

KORKARA KERKER DAGA

Thus, *w* must be a fixed point.

Am Important Theorem

This is a saw

Theorem (Fundamental Theorem of Algebra)

A degree n polynomial of complex coefficients has exactly n roots, counting multiplicity.

A byproduct of this:

a degree n complex polynomial can be factored into n linear terms

KORK ERKER ADAM ADA

Some Calculus

This is a straight edge

Definition

The **derivative of** *f* **at** *w* <21->

$$
f'(w) = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}
$$

is the instantaneous rate of change of *f*.

Suppose *w* is a fixed point of *f*(*z*). Then

$$
|f(z)-w| = |f(z)-f(w)| \approx |f'(z)| \cdot |z-w|
$$

distance between scalar multiple of distance *f*(*z*) and *w* between *z* and *w*

KORK ERKER ADAM ADA

Local Fixed Point Theory

This is a nail

Definition (Multiplier of a Fixed Point)

Suppose *w* is a fixed point of *f*, and let $\lambda = f'(w)$.

- \blacktriangleright If $|\lambda| < 1$, then *w* is an **attracting** fixed point;
- \blacktriangleright If $|\lambda| > 1$, then *w* is a **repelling** fixed point; and

KORK ERKER ADAM ADA

 \blacktriangleright If $|\lambda| = 1$, then *w* is an **indifferent** fixed point.

$f^3(\mathcal{B}(w,r)) \subseteq f^2(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

$f^3(\mathcal{B}(w,r)) \subseteq f^2(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

$f^3(\mathcal{B}(w,r)) \subseteq f^2(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

$f^3(\mathcal{B}(w,r)) \subseteq f^2(\mathcal{B}(w,r)) \subseteq f(\mathcal{B}(w,r)) \subseteq \mathcal{B}(w,r)$

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

$f(z) = z^2$

Example:
$$
f(z) = z^2
$$
.

\n\n- 0.9 \mapsto 0.81 \mapsto 0.6561 \mapsto 0.4305 $\mapsto \cdots$ 0.
\n- $z \mapsto z^2 \mapsto z^4 \mapsto z^8 \mapsto \cdots \mapsto z^{(2^n)} \mapsto \cdots$ 0 for $|z| < 1$.
\n

Definition

The **basin of attraction** for an attracting fixed point *w*

$$
\mathcal{A}_w = \{z: \lim_{n \to \infty} f^n(z) = w\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

is the set of all points whose orbits converge to *w*.

Working Backwards eert a si sihT

Definition

The **preimage** of a point *z* under *f* is the set of points $\{w_d\}$ such that $f(w_d) = z$. If *f* is a degree *d* polynomial, then there exists *d* preimages of *z*, counting multiplicity.

Invariance of J and $\mathcal F$

This is a pencil

Proposition

The following are equivalent:

- \blacktriangleright *z* is an element of \mathcal{F} ;
- \blacktriangleright *f*(*z*) *is an element of <i>F*;
- ▶ $f^{-1}(z)$ is an element of \mathcal{F} .

Fatou and Julia sets are *totally invariant***.**

A Better Tool

This is a sledgehammer..

Definition

A point z_0 is called a **degree** k **periodic point** of f if $f^k(z_0) = z_0$ and $z_0, z_1, z_2, \cdots, z_{k-1}$ are all distinct.

If z_0 is a degree *k* periodic point of *f*, $\tan z_0$ is a *fixed point* of f^k .

Iteration Lemma

... that is really just a hammer

Lemma

For any k, the sets $\mathcal{F}(f^k)$, $J(f^k)$, and $K(f^k)$ are exactly the sets $\mathcal{F}(f)$ *,* $J(f)$ *, and K* (f) *.*

 $K(f)$

 $K(f^{2024})$

Local Fixed Point Theory

This is a bigger nail

Definition

Suppose $\{z_0, z_1, \dots, z_{k-1}\}\)$ is a degree *k* periodic cycle of *f*, and let

$$
\lambda = (f^{k})'(z_{i}) = f'(z_{0}) \cdot f'(z_{1}) \cdot \ldots \cdot f'(z_{k-1})
$$

▶ If $|\lambda|$ < 1, then $\{z_0, z_1, \dots, z_{k-1}\}$ is an **attracting** cycle; ▶ If $|\lambda| > 1$, then $\{z_0, z_1, \dots, z_{k-1}\}$ is a **repelling** cycle; and ▶ If $|\lambda| = 1$, then $\{z_0, z_1, \dots, z_{k-1}\}$ is an **indifferent** cycle.

Conjugate Maps

This is a box

▶ Can we make our lives easier?

Definition

Polynomials *f* and *g* are **conjugate** if there exists an invertible function φ such that

$$
\varphi\circ f=g\circ\varphi,
$$

or, equivalently,

$$
\mathit{f}=\varphi^{-1}\circ\mathit{g}\circ\varphi
$$

Properties of Conjugate Maps

Let
$$
f = \varphi^{-1} \circ g \circ \varphi
$$
. Then
\n
$$
f^{n} = f \circ \cdots \circ f = (\varphi^{-1} \circ g \circ \varphi) \circ \cdots \circ (\varphi^{-1} \circ g \circ \varphi) = \varphi^{-1} \circ g^{n} \circ \varphi
$$

 \blacktriangleright Let *z* be fixed by *f* and $\varphi(z) = w$. Then

$$
w = \varphi(z) = (\varphi \circ f)(z) = (\varphi \circ \varphi^{-1} \circ g \circ \varphi)(z) = (g \circ \varphi)(z) = g(w)
$$

 \blacktriangleright Let $f'(z) = \lambda$. Then

 $\lambda = f'(\textit{w}) = (\varphi^{-1} \circ g \circ \varphi)'(\textit{z}) = (\varphi^{-1})(\textit{w}){\cdot}g'(\textit{w}){\cdot}\varphi'(\textit{z}) = g'(\textit{w})$

But why do we care?

All Quadratics are Conjugate to $z^2 + c$ Let $g(z) = az^2 + bz + k$, and let $\varphi(z) = \frac{1}{a}z - \frac{b}{2a}$. Hence $\varphi^{-1}(z) = az + \frac{b}{2}$ and

$$
f(z) = (\varphi^{-1} \circ g \circ \varphi)(z) = \varphi^{-1}(g(\varphi(z)))
$$

= $a \left(a \left(\frac{1}{a} z - \frac{b}{2a} \right)^2 + b \left(\frac{1}{a} z - \frac{b}{2a} \right) + k \right) + \frac{b}{2}$
= $z^2 - bz + \frac{b^2}{4} + bz - \frac{b^2}{2} + ak + \frac{b}{2}$
= $z^2 + \frac{b^2}{4} - \frac{b^2}{2} + ak + \frac{b}{2}$
= $z^2 + c$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*
Consider the conjugacy classes of maps $f_c(z) = z^2 + c$:

- ▶ For what *c* does *f_c* have an attracting point?
- ▶ For what *c* does *f_c* have an attracting two-cycle?

. . .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

▶ For what *^c* does *^f^c* have an attracting *^k*-cycle?

Attracting Fixed Points

Find *c* such that $f_c(z) = z^2 + c$ has a fixed point:

$$
f_c(z) = z^2 + c = z
$$

\n
$$
z^2 - z + c = 0
$$

\n
$$
(z - a)(z - b) = 0
$$

\n
$$
z^2 - (a + b)z + ab = 0
$$

\n
$$
a + b = 1 \qquad ab = c
$$

We want at least one *attracting* fixed point; so

$$
|\lambda_a| = |f'_c(a)| = |2a| < 1 \rightarrow |a| < \frac{1}{2}
$$

KO KKO K S A B K S B K V S A V K S

Attracting Fixed Points

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Attracting Period-2 Points

Find *c* such that $f_c(z) = z^2 + c$ has a period-2 cycle:

$$
f_c^2(z) = f_c(f_c(z)) = (z^2 + c)^2 + c = z
$$

\n
$$
z^4 + 2cz^2 - z + c^2 + c = 0
$$

\n
$$
(z - a)(z - b)(z^2 + z + 1 + c) = 0
$$

\n
$$
(z - u)(z - v) = z^2 - (u + v)z + uv
$$

\n
$$
u + v = -1 \qquad uv = 1 + c
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

Attracting Period-2 Points

$$
\lambda = (f_c^2)'(u) = f'_c(f_c(u))f'_c(u)
$$

= $f'_c(v)f'_c(u) = (2u)(2v) = 4uv$

$$
|\lambda| < 1 \Rightarrow |1 + c| < 1/4
$$

Kロトメ部トメミトメミト (ミ) のQC

From Kleinian groups...

2-GENERATOR SUBGROUPS OF PSL $(2, \mathbb{C})$

Fig. 2. The set of C's such that $f(z) = z^2 + C$ has a stable periodic orbit.

R. Brooks and P. Matelski, 1981. The dynamics of 2-generator subgroups of *PSL*(2, *C*).

71

KEL KALEY KEY E NAG

...to internet fame

The Mandelbrot Set. Accessed from Wikimedia Commons.

Kロトメ部トメミトメミト (ミ) のQC

The Old and The New

▶ **Douady-Hubbard** ('82): *M* is connected [\[4\]](#page-97-0).

▶ Mandelbrot Locally Connected (MLC) conjectured

▶ **Sullivan** ('85): Classification Theorem [\[7\]](#page-97-1).

▶ There exist only hyperbolic cycles, parabolic cycles, Siegel disks, or Herman rings.

• Hubbard ('93): If MLC, then $\mathcal{H} = \text{int } M$ and $M = \overline{\mathcal{H}}$ [\[5\]](#page-97-2).

▶ **Douady** ('94): *K*(*f*) is not continuous with respect to *f* [\[3\]](#page-97-3).

Outline

[Function Iteration](#page-3-0) [Motivating Examples](#page-4-0) [Fractals](#page-8-0)

[Toolbox of Tricks](#page-15-0)

[Dynamics 101](#page-18-0) [Conjugacy](#page-30-0) [The Mandelbrot Set](#page-33-0)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

[Current Work](#page-41-0)

A brief thread through history

2012
$$
\cdots
$$
 $\begin{cases} [1] \text{ Boyd & Schulz:} \\ f_n(z) = z^n + c. \end{cases}$

K ロ X x (日 X X B X X B X X B X X O Q O

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

▶ where $n \geq 2$ is an integer, and

 \blacktriangleright *c* \in $\mathbb C$ is a complex parameter.

*f*2,−0.12+0.75*ⁱ*

*f*2,−0.15+*i*

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

▶ where $n \geq 2$ is an integer, and

 \triangleright *c* ∈ $\mathbb C$ is a complex parameter.

*f*4,−0.12+0.75*ⁱ*

*f*4,−0.15+*i*

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

► where $n \geq 2$ is an integer, and

 \blacktriangleright *c* \in $\mathbb C$ is a complex parameter.

$$
f_{8,-0.12+0.75\textit{i}}
$$

*f*8,−0.15+*i*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

► where $n \geq 2$ is an integer, and

 \blacktriangleright *c* \in $\mathbb C$ is a complex parameter.

$$
f_{16,-0.12+0.75i} \\
$$

*f*16,−0.15+*i*

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

► where $n \geq 2$ is an integer, and

 \blacktriangleright *c* \in $\mathbb C$ is a complex parameter.

$$
f_{32,-0.12+0.75\it{i}}
$$

*f*32,−0.15+*i*

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

► where $n \geq 2$ is an integer, and

 \blacktriangleright *c* \in $\mathbb C$ is a complex parameter.

$$
f_{64,-0.12+0.75i}
$$

*f*64,−0.15+*i*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=z^n+c,
$$

► where $n \geq 2$ is an integer, and

 \blacktriangleright *c* \in $\mathbb C$ is a complex parameter.

$$
f_{128,-0.12+0.75i} \\
$$

*f*128,−0.15+*i*

Boyd-Schulz

$$
f_{n,c}(z)=z^n+c
$$

Theorem (Boyd-Schulz, 2012 [\[1\]](#page-97-4))

Let c ∈ C*. Using the Hausdorff metric,* (1) *If* $c \in \mathbb{C} \setminus \overline{\mathbb{D}}$ *, then* $\lim_{n \to \infty} K(f_{n,c}) = S_0 = \{|z| = 1\}$ *.* (2) If $c \in \mathbb{D}$, then $\lim_{n \to \infty} K(f_{n,c}) = \overline{\mathbb{D}} = \{|z| \leq 1\}$. (3) If $c \in S^1$, then if $\lim_{n \to \infty} K(f_{n,c})$ exists, it is contained in $\overline{\mathbb{D}}$.

KEL KALEY KEY E NAG

Boyd-Schulz

$$
f_{n,c}(z)=z^n+c
$$

Theorem (Boyd-Schulz, 2012 [\[1\]](#page-97-4))

Let c ∈ C*. Using the Hausdorff metric,* (1) *If* $c \in \mathbb{C} \setminus \overline{\mathbb{D}}$ *, then* $\lim_{n \to \infty} K(f_{n,c}) = S_0 = \{|z| = 1\}$ *.* (2) If $c \in \mathbb{D}$, then $\lim_{n \to \infty} K(f_{n,c}) = \overline{\mathbb{D}} = \{|z| \leq 1\}$. (3) If $c \in S^1$, then if $\lim_{n \to \infty} K(f_{n,c})$ exists, it is contained in $\overline{\mathbb{D}}$.

KOD KARD KED KED BE YOUR

(3) was further improved in [\[6\]](#page-97-5) (2015).

A brief thread through history

2012
\n
$$
f_n(z) = z^n + c
$$
.
\n**2015**
\n**2020**
\n**2028**
\n**2029**
\n**2020**
\n**2028**
\n**2029**
\n**2020**
\n**2028**
\n**2029**
\n**2020**
\n**2020**
\n**2020**
\n**2021**
\n**2022**
\n**2029**
\n**2020**
\n**2020**
\n**2021**
\n**2022**
\n**2028**
\n**2029**
\n**2020**
\n**2020**
\n**2021**
\n**2022**
\n**2023**
\n**2020**
\n**2021**
\n**2022**
\n**2023**
\n**2020**
\n**2021**
\n**2022**
\n**2023**
\n**2020**
\n**2021**
\n**2022**
\n**2023**
\n**2025**
\n**2026**
\n**2028**
\n**2029**
\n**2020**
\n**2021**
\n**2029**
\n**2020**
\n**2021**
\n**2022**
\n**2029**
\n**2020**
\n**2021**
\n**2022**
\n**2022**
\n**2023**
\n**2022**
\n**2023**

 \mathbb{L}

K ロ X x (日 X X B X X B X X B X X O Q O

More geometric limits of Julia sets

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

 $f_n(z) = z^n + q(z),$

▶ where $n > 2$ is an integer, and

▶ *q* is a fixed degree *d* polynomial.

*f*200,*^z* ²+0.25+0.25*i*

*f*200,*^z* 2+0.45+0.25*i*

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 4
$$

 $K(q)$

 $K(f_{4,q})$

K ロ ト K 御 ト K 重 ト K 重 ト … 重

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 8
$$

 $K(q)$

 $K(f_{8,q})$

K ロラ K 御 と K 君 と K 君 と

 290

È

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 16
$$

 $K(q)$

 $K(f_{16,q})$

⊀ロト ⊀個 ト ⊀ 言 ト ⊀ 言 トー

È

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 32
$$

 $K(q)$

 $K(f_{32,q})$

⊀ロト ⊀個 ト ⊀ 言 ト ⊀ 言 トー

 290

重

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 64
$$

 $K(q)$

 $K(f_{64,q})$

K ロラ K 倒 ト K 差 ト K 差 ト

 299

目

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 80
$$

 $K(q)$

 $K(f_{80,q})$

(ロ) (個) (差) (差)

È

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 180
$$

 $K(q)$

 $K(f_{180,q})$

<ロトメ個トメミトメミトン店

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 360
$$

 $K(q)$

 $K(f_{360,q})$

K ロ ト K 個 ト K 差 ト K 差 ト … 差

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 720
$$

 $K(q)$

 $K(f_{720,q})$

K ロ ト K 個 ト K 産 ト K 差 ト 一番 …

$$
q(z) = z^2 - 0.1 + 0.75i,
$$

$$
n = 1800
$$

 $K(q)$

 $K(f_{1800,q})$

メロトメ 御 トメ 君 トメ 君 トッ 君

The limit set

K ロ X x (日 X X B X X B X X B X X O Q O

The limit set *K*_q = \bigcap^{∞} $q^{-i}(\bar{\mathbb{D}}) = \{z : q^{i}(z) \in \bar{\mathbb{D}} \ \forall i \geq 0\}$ $i=0$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The limit set $_{\infty}$ $K_q = \bigcap^{\infty}$ *i*=0 *q*^{−*i*}($\bar{\mathbb{D}}$) = {*z*: *qⁱ*(*z*) ∈ $\bar{\mathbb{D}}$ ∀*i* ≥ 0} $S_0 = \{z : |z| = 1\}$

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

The limit set

$$
K_q = \bigcap_{i=0}^{\infty} q^{-i}(\bar{\mathbb{D}}) = \{z : q^i(z) \in \bar{\mathbb{D}} \ \forall i \geq 0\}
$$

$$
S_0 = \{z : |z| = 1\}
$$

 $S_j = \{q^j(z) \in \partial \mathbb{D} \text{ and } q^j(z) \in \mathbb{D} \text{ for } i = 1, \ldots, j-1\}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q*

The limit set

$$
K_q = \bigcap_{i=0}^{\infty} q^{-i}(\bar{\mathbb{D}}) = \{z : q^i(z) \in \bar{\mathbb{D}} \ \forall i \geq 0\}
$$

$$
S_0 = \{z : |z| = 1\}
$$

 $S_j = \{q^j(z) \in \partial \mathbb{D} \text{ and } q^j(z) \in \mathbb{D} \text{ for } i = 1, \ldots, j-1\}$

$$
\lim_{n\to\infty} K(f_{n,q}) = K_q \cup \bigcup_{j\geq 0} S_j
$$
Brame & Kaschner

$$
f_n(z)=z^n+q(z)
$$

Theorem (Brame-Kaschner, 2020 [\[2\]](#page-97-0))

If deg *q* ≥ 2*, q is hyperbolic, and q has no attracting fixed points in S*0*, then*

$$
\lim_{n\to\infty} K(f_{n,q})=K_q\cup \bigcup_{j\geq 0} S_j.
$$

KOD KARD KED KED BE YOUR

A brief thread through history

2012 \cdots	[1] Boyd & Schulz:
$f_n(z) = z^n + c$.	
2015 \cdots	[6] Kaschner, Romero, &
Simmons: $f_n(z) = z^2 + c$.	
2020 \cdots	[2] Brame & Kaschner:
$f_n(z) = z^n + q(z)$.	
2023 \cdots	$f_n(z) = (p(z))^n + q(z)$.

K ロ X x (日 X X B X X B X X B X O Q O

Even more geometric limits of Julia sets

Let $f_n: \mathbb{C} \to \mathbb{C}$ by

$$
f_n(z)=(p(z))^n+q(z),
$$

- **►** where $n \geq 2$ is an integer, and
- \blacktriangleright *p*, *q* are fixed polynomials.

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 4
$$

 $K(q)$ $K(f_4)$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君 ○

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 8
$$

 $K(q)$ $K(f_8)$

イロトメ 御 トメ 君 トメ 君 ト

È

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 16
$$

 $K(f_{16})$ *K*(*f*₁₆)

イロトメ 御 トメ 君 トメ 君 トー

重

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 32
$$

 $K(f_{32})$ *K*(*f*₃₂)

<ロトメ個トメミトメミトン店

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 64
$$

 $K(f_{64})$ *K*(*f*₆₄)

<ロトメ個トメミトメミトン店

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 80
$$

 $K(f_{80})$ *K*(*f*₈₀)

K ロ ト K 個 ト K 差 ト K 差 ト … 差

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 180
$$

 $K(q)$ *K*(*f*₁₈₀)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 360
$$

 $K(q)$ *K*(*f*₃₆₀)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君 ○

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 720
$$

 $K(q)$ *K*(*f*₇₂₀)

イロメイ団メイ君メイ君メー君

$$
p(z) = z2 + 0.05 + 0.75i,q(z) = z2 - 0.1 + 0.75i,n = 1800
$$

 $K(f_{1800})$ *K*(*f*₁₈₀₀)

イロメイ団メイ君メイ君メー君

The trouble with Quibbles $\overline{}$

Kロトメ部トメミトメミト ミニのQC

The trouble with Quibbles $K_q = \bigcap_{i=1}^{\infty} q^{-i} \left(p^{-1}(\bar{D}) \right)$ $j=0$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어)

The trouble with Quibbles $K_q = \bigcap_{i=1}^{\infty} q^{-i} \left(p^{-1}(\bar{D}) \right)$ *j*=0 $Q_0 = \left\{ p^{-1}(z) : |z| = 1 \right\}$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

The trouble with Quibbles $K_q = \bigcap_{i=1}^{\infty} q^{-i} \left(p^{-1}(\bar{D}) \right)$ *j*=0 $Q_0 = \left\{ p^{-1}(z) : |z| = 1 \right\}$ $\mathcal{Q}_j = \left\{ q^j(z) \in \partial p^{-1}(\mathbb{D}) \text{ and } q^k(z) \in p^{-1}(\mathbb{D}) \text{ for } k = 1, \ldots, j - 1 \right\}$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

The trouble with Quibbles $K_q = \bigcap_{i=1}^{\infty} q^{-i} \left(p^{-1}(\bar{D}) \right)$ $j=0$ $Q_0 = \left\{ p^{-1}(z) : |z| = 1 \right\}$ $\mathcal{Q}_j = \left\{ q^j(z) \in \partial p^{-1}(\mathbb{D}) \text{ and } q^k(z) \in p^{-1}(\mathbb{D}) \text{ for } k = 1, \ldots, j - 1 \right\}$

 $\lim_{n\to\infty} K(f_n) = K_q \cup \bigcup_{i=1}^n Q_i$ *j*≥0 **KORKAR KERKER E VOOR**

Generalization

$$
f_n(z)=(p(z))^n+q(z)
$$

Theorem (Kaschner, Kapiamba, & W.; 2023)

If p, q are polynomials with deg $p, q \geq 2$ *, and q is hyperbolic with no attracting periodic points on* $\partial p^{-1}(\overline{D})$ *, then*

$$
\lim_{n\to\infty} K(f_{n,p,q})=K_q\cup \bigcup_{j\geq 0}\mathcal Q_j
$$

KORK ERKER ADAM ADA

A brief thread through history. . . and the future

2012 \cdots	[1] Boyd & Schulz: $f_n(z) = z^n + c$
2015 \cdots	[6] Kaschner & Romero & Simmons: $f_n(z) = z^2 + c$
2020 \cdots	[2] Brame & Kaschner: $f_n(z) = z^n + q(z)$
2023 \cdots	$f_n(z) = (p(z))^n + q(z)$
2024 \cdots	$g_n(z) = p^n(z) + q(z)$

KOXK@XKEXKEX E 1990

Current work

$$
\begin{array}{rcl}\n(p(z))^n & \neq & p^n(z) \\
\text{powers} & \text{iterates}\n\end{array}
$$

Behold, for

►
$$
p(z) = z^2 - 0.1 + 0.75i
$$
,
\n► $q(z) = z^2 - 0.1 + 0.2i$;
\n▶ $n = 51$;

$$
f_n=(p(z))^n+q(z)
$$

 $f_n = (p(z))^n + q(z)$ *g_n* = $p^n(z) + q(z)$

KO K K Ø K K E K K E K Y S K Y K K K K K

Immediate issues with subsequential limits $g_n(z) = p^n(z) + q(z)$ *p*(*z*) = *z* ² − 0.123 + 0.745*i q*(*z*) = *z* ² − 0.2 − 0.3*i*

K(g_n) for *n* = 49, 50, 51.

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Immediate issues with subsequential limits $g_n(z) = p^n(z) + q(z)$ *p*(*z*) = *z* ² − 0.123 + 0.745*i q*(*z*) = *z* ² − 0.2 − 0.3*i*

$K(g_n)$ for $n = 49, 50, 51$.

K(g_n) for $n = 54, 57, 60$.

 $\Box \rightarrow \neg \left(\Box \overline{\partial} \rightarrow \neg \left(\Box \overline{\partial} \rightarrow \neg \left(\Box \overline{\partial} \right) \right) \right)$

Escaping the Rabbitverse

- ▶ Suppose *p* is hyperbolic with periodic attracting cycle z_1, \cdots, z_k .
- ▶ For each *n* there exists $l \in \{1, \dots, k\}$ such that

$$
g_n(z)=p^{km+\ell}+q(z)\approx z_\ell+q(z)
$$

▶ Define $\hat{g}(z)$: $\hat{C} \rightarrow \hat{C}$ via

$$
\hat{g}(z) = \begin{cases}\nq(z) + \lim_{m \to \infty} p^{n_m} & z \in \text{int } K(p) \\
p(z) & z \in \mathcal{J}(p) \\
\infty & z \in \hat{\mathbb{C}} \setminus K(p)\n\end{cases}
$$

KORKARA KERKER DAGA

Major Results

Theorem

For any polynomials p, *q,*

$$
\partial K(\hat{g}) \subseteq \liminf_{m \to \infty} K(g_{n_m}) \subseteq \limsup_{m \to \infty} K(g_{n_m}) \subseteq K(\hat{g})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Theorem

$$
\lim_{n\to\infty} K(g_{n_m})=K(\hat{g}) \text{ if }
$$

- ▶ *p hyperbolic, and*
- \triangleright int $K(\hat{g})$ *is comprised of attracting basins for* \hat{g} *.*

References

Suzanne Hruska Boyd and Michael J. Schulz.

Geometric limits of Mandelbrot and Julia sets under degree growth. *Internat. J. Bifur. Chaos Appl. Sci. Engrg.*, 22(12):1250301, 21, 2012.

Micah Brame and Scott Kaschner.

Geometric limits of Julia sets for sums of power maps and polynomials. *Complex Analysis and its Synergies*, 6(3):1–8, 2020.

Adrien Douady.

Does a Julia set depend continuously on the polynomial. *Complex dynamical systems: The mathematics behind the Mandelbrot set and Julia sets*, 49:91–138, 1994.

Adrien Douady and John H. Hubbard.

On the dynamics of polynomial-like mappings.

Annales scientifiques de l'École Normale Supérieure, 18(2):287–343, 1985.

ā.

John H. Hubbard.

Local connectivity of Julia sets and bifurcation loci: three theorems of J. 1993.

Scott R Kaschner, Reaper Romero, and David Simmons.

Geometric limits of Julia sets of maps $z^n + \exp(2\pi i\theta)$ as $n \to \infty$. *International Journal of Bifurcation and Chaos*, 25(08):1530021, 2015.

Dennis Sullivan.

Quasiconformal homeomorphisms and dynamics I. solution of the Fatou-Julia problem on wandering domains.

KOD KARD KED KED BE YOUR

Annals of mathematics, 122(2):401–418, 1985.

THANK YOU!

Eleanor Waiss ewaiss@butler.edu

A Limited History of Complex Dynamics

Butler University

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @